Metamath Proof Explorer


Theorem shincl

Description: Closure of intersection of two subspaces. (Contributed by NM, 24-Jun-2004) (New usage is discouraged.)

Ref Expression
Assertion shincl A S B S A B S

Proof

Step Hyp Ref Expression
1 ineq1 A = if A S A A B = if A S A B
2 1 eleq1d A = if A S A A B S if A S A B S
3 ineq2 B = if B S B if A S A B = if A S A if B S B
4 3 eleq1d B = if B S B if A S A B S if A S A if B S B S
5 helsh S
6 5 elimel if A S A S
7 5 elimel if B S B S
8 6 7 shincli if A S A if B S B S
9 2 4 8 dedth2h A S B S A B S