Metamath Proof Explorer


Theorem shincli

Description: Closure of intersection of two subspaces. (Contributed by NM, 19-Oct-1999) (New usage is discouraged.)

Ref Expression
Hypotheses shincl.1 A S
shincl.2 B S
Assertion shincli A B S

Proof

Step Hyp Ref Expression
1 shincl.1 A S
2 shincl.2 B S
3 1 elexi A V
4 2 elexi B V
5 3 4 intpr A B = A B
6 1 2 pm3.2i A S B S
7 3 4 prss A S B S A B S
8 6 7 mpbi A B S
9 3 prnz A B
10 8 9 pm3.2i A B S A B
11 10 shintcli A B S
12 5 11 eqeltrri A B S