Metamath Proof Explorer


Theorem shintcl

Description: The intersection of a nonempty set of subspaces is a subspace. (Contributed by NM, 2-Jun-2004) (New usage is discouraged.)

Ref Expression
Assertion shintcl A S A A S

Proof

Step Hyp Ref Expression
1 inteq A = if A S A A S A = if A S A A S
2 1 eleq1d A = if A S A A S A S if A S A A S S
3 sseq1 A = if A S A A S A S if A S A A S S
4 neeq1 A = if A S A A S A if A S A A S
5 3 4 anbi12d A = if A S A A S A S A if A S A A S S if A S A A S
6 sseq1 S = if A S A A S S S if A S A A S S
7 neeq1 S = if A S A A S S if A S A A S
8 6 7 anbi12d S = if A S A A S S S S if A S A A S S if A S A A S
9 ssid S S
10 h0elsh 0 S
11 10 ne0ii S
12 9 11 pm3.2i S S S
13 5 8 12 elimhyp if A S A A S S if A S A A S
14 13 shintcli if A S A A S S
15 2 14 dedth A S A A S