Database
COMPLEX HILBERT SPACE EXPLORER (DEPRECATED)
Subspaces and projections
Subspace sum, span, lattice join, lattice supremum
shjcl
Next ⟩
chjcl
Metamath Proof Explorer
Ascii
Unicode
Theorem
shjcl
Description:
Closure of join in
SH
.
(Contributed by
NM
, 2-Nov-1999)
(New usage is discouraged.)
Ref
Expression
Assertion
shjcl
⊢
A
∈
S
ℋ
∧
B
∈
S
ℋ
→
A
∨
ℋ
B
∈
C
ℋ
Proof
Step
Hyp
Ref
Expression
1
shss
⊢
A
∈
S
ℋ
→
A
⊆
ℋ
2
shss
⊢
B
∈
S
ℋ
→
B
⊆
ℋ
3
sshjcl
⊢
A
⊆
ℋ
∧
B
⊆
ℋ
→
A
∨
ℋ
B
∈
C
ℋ
4
1
2
3
syl2an
⊢
A
∈
S
ℋ
∧
B
∈
S
ℋ
→
A
∨
ℋ
B
∈
C
ℋ