Metamath Proof Explorer


Theorem shjshsi

Description: Hilbert lattice join equals the double orthocomplement of subspace sum. (Contributed by NM, 27-Nov-2004) (New usage is discouraged.)

Ref Expression
Hypotheses shjshs.1 A S
shjshs.2 B S
Assertion shjshsi A B = A + B

Proof

Step Hyp Ref Expression
1 shjshs.1 A S
2 shjshs.2 B S
3 shjval A S B S A B = A B
4 1 2 3 mp2an A B = A B
5 1 2 shunssi A B A + B
6 1 shssii A
7 2 shssii B
8 6 7 unssi A B
9 1 2 shscli A + B S
10 9 shssii A + B
11 8 10 occon2i A B A + B A B A + B
12 5 11 ax-mp A B A + B
13 4 12 eqsstri A B A + B
14 1 2 shsleji A + B A B
15 1 2 shjcli A B C
16 15 chssii A B
17 occon A + B A B A + B A B A B A + B
18 10 16 17 mp2an A + B A B A B A + B
19 14 18 ax-mp A B A + B
20 occl A + B A + B C
21 10 20 ax-mp A + B C
22 15 21 chsscon1i A B A + B A + B A B
23 19 22 mpbi A + B A B
24 13 23 eqssi A B = A + B