Database
COMPLEX HILBERT SPACE EXPLORER (DEPRECATED)
Subspaces and projections
Subspace sum, span, lattice join, lattice supremum
shjval
Next ⟩
chjval
Metamath Proof Explorer
Ascii
Unicode
Theorem
shjval
Description:
Value of join in
SH
.
(Contributed by
NM
, 9-Aug-2000)
(New usage is discouraged.)
Ref
Expression
Assertion
shjval
⊢
A
∈
S
ℋ
∧
B
∈
S
ℋ
→
A
∨
ℋ
B
=
⊥
⁡
⊥
⁡
A
∪
B
Proof
Step
Hyp
Ref
Expression
1
shss
⊢
A
∈
S
ℋ
→
A
⊆
ℋ
2
shss
⊢
B
∈
S
ℋ
→
B
⊆
ℋ
3
sshjval
⊢
A
⊆
ℋ
∧
B
⊆
ℋ
→
A
∨
ℋ
B
=
⊥
⁡
⊥
⁡
A
∪
B
4
1
2
3
syl2an
⊢
A
∈
S
ℋ
∧
B
∈
S
ℋ
→
A
∨
ℋ
B
=
⊥
⁡
⊥
⁡
A
∪
B