Metamath Proof Explorer


Theorem shlej1

Description: Add disjunct to both sides of Hilbert subspace ordering. (Contributed by NM, 22-Jun-2004) (Revised by Mario Carneiro, 15-May-2014) (New usage is discouraged.)

Ref Expression
Assertion shlej1 A S B S C S A B A C B C

Proof

Step Hyp Ref Expression
1 simpr A S B S C S A B A B
2 unss1 A B A C B C
3 simpl1 A S B S C S A B A S
4 shss A S A
5 3 4 syl A S B S C S A B A
6 simpl3 A S B S C S A B C S
7 shss C S C
8 6 7 syl A S B S C S A B C
9 5 8 unssd A S B S C S A B A C
10 simpl2 A S B S C S A B B S
11 shss B S B
12 10 11 syl A S B S C S A B B
13 12 8 unssd A S B S C S A B B C
14 occon2 A C B C A C B C A C B C
15 9 13 14 syl2anc A S B S C S A B A C B C A C B C
16 2 15 syl5 A S B S C S A B A B A C B C
17 1 16 mpd A S B S C S A B A C B C
18 shjval A S C S A C = A C
19 3 6 18 syl2anc A S B S C S A B A C = A C
20 shjval B S C S B C = B C
21 10 6 20 syl2anc A S B S C S A B B C = B C
22 17 19 21 3sstr4d A S B S C S A B A C B C