Database
COMPLEX HILBERT SPACE EXPLORER (DEPRECATED)
Subspaces and projections
Subspace sum, span, lattice join, lattice supremum
shlej1i
Metamath Proof Explorer
Description: Add disjunct to both sides of Hilbert subspace ordering. (Contributed by NM , 19-Oct-1999) (Revised by Mario Carneiro , 15-May-2014)
(New usage is discouraged.)
Ref
Expression
Hypotheses
shincl.1
⊢ A ∈ S ℋ
shincl.2
⊢ B ∈ S ℋ
shless.1
⊢ C ∈ S ℋ
Assertion
shlej1i
⊢ A ⊆ B → A ∨ ℋ C ⊆ B ∨ ℋ C
Proof
Step
Hyp
Ref
Expression
1
shincl.1
⊢ A ∈ S ℋ
2
shincl.2
⊢ B ∈ S ℋ
3
shless.1
⊢ C ∈ S ℋ
4
shlej1
⊢ A ∈ S ℋ ∧ B ∈ S ℋ ∧ C ∈ S ℋ ∧ A ⊆ B → A ∨ ℋ C ⊆ B ∨ ℋ C
5
4
ex
⊢ A ∈ S ℋ ∧ B ∈ S ℋ ∧ C ∈ S ℋ → A ⊆ B → A ∨ ℋ C ⊆ B ∨ ℋ C
6
1 2 3 5
mp3an
⊢ A ⊆ B → A ∨ ℋ C ⊆ B ∨ ℋ C