Metamath Proof Explorer


Theorem shlej1i

Description: Add disjunct to both sides of Hilbert subspace ordering. (Contributed by NM, 19-Oct-1999) (Revised by Mario Carneiro, 15-May-2014) (New usage is discouraged.)

Ref Expression
Hypotheses shincl.1 A S
shincl.2 B S
shless.1 C S
Assertion shlej1i A B A C B C

Proof

Step Hyp Ref Expression
1 shincl.1 A S
2 shincl.2 B S
3 shless.1 C S
4 shlej1 A S B S C S A B A C B C
5 4 ex A S B S C S A B A C B C
6 1 2 3 5 mp3an A B A C B C