Metamath Proof Explorer


Theorem shlej2

Description: Add disjunct to both sides of Hilbert subspace ordering. (Contributed by NM, 22-Jun-2004) (New usage is discouraged.)

Ref Expression
Assertion shlej2 A S B S C S A B C A C B

Proof

Step Hyp Ref Expression
1 shlej1 A S B S C S A B A C B C
2 shjcom A S C S A C = C A
3 2 3adant2 A S B S C S A C = C A
4 3 adantr A S B S C S A B A C = C A
5 shjcom B S C S B C = C B
6 5 3adant1 A S B S C S B C = C B
7 6 adantr A S B S C S A B B C = C B
8 1 4 7 3sstr3d A S B S C S A B C A C B