Metamath Proof Explorer


Theorem shlej2i

Description: Add disjunct to both sides of Hilbert subspace ordering. (Contributed by NM, 19-Oct-1999) (New usage is discouraged.)

Ref Expression
Hypotheses shincl.1 A S
shincl.2 B S
shless.1 C S
Assertion shlej2i A B C A C B

Proof

Step Hyp Ref Expression
1 shincl.1 A S
2 shincl.2 B S
3 shless.1 C S
4 1 2 3 shlej1i A B A C B C
5 3 1 shjcomi C A = A C
6 3 2 shjcomi C B = B C
7 4 5 6 3sstr4g A B C A C B