Metamath Proof Explorer


Theorem shlesb1i

Description: Hilbert lattice ordering in terms of subspace sum. (Contributed by NM, 23-Nov-2004) (New usage is discouraged.)

Ref Expression
Hypotheses shlesb1.1 A S
shlesb1.2 B S
Assertion shlesb1i A B A + B = B

Proof

Step Hyp Ref Expression
1 shlesb1.1 A S
2 shlesb1.2 B S
3 ssid B B
4 3 biantrur A B B B A B
5 2 1 2 shslubi B B A B B + A B
6 2 1 shsub2i B A + B
7 eqss A + B = B A + B B B A + B
8 6 7 mpbiran2 A + B = B A + B B
9 1 2 shscomi A + B = B + A
10 9 sseq1i A + B B B + A B
11 8 10 bitr2i B + A B A + B = B
12 4 5 11 3bitri A B A + B = B