| Step | Hyp | Ref | Expression | 
						
							| 1 |  | unss |  | 
						
							| 2 |  | simp1 |  | 
						
							| 3 |  | shss |  | 
						
							| 4 | 2 3 | syl |  | 
						
							| 5 |  | simp2 |  | 
						
							| 6 |  | shss |  | 
						
							| 7 | 5 6 | syl |  | 
						
							| 8 | 4 7 | unssd |  | 
						
							| 9 |  | chss |  | 
						
							| 10 | 9 | 3ad2ant3 |  | 
						
							| 11 |  | occon2 |  | 
						
							| 12 | 8 10 11 | syl2anc |  | 
						
							| 13 | 1 12 | biimtrid |  | 
						
							| 14 |  | shjval |  | 
						
							| 15 | 2 5 14 | syl2anc |  | 
						
							| 16 |  | ococ |  | 
						
							| 17 | 16 | 3ad2ant3 |  | 
						
							| 18 | 17 | eqcomd |  | 
						
							| 19 | 15 18 | sseq12d |  | 
						
							| 20 | 13 19 | sylibrd |  | 
						
							| 21 |  | shub1 |  | 
						
							| 22 | 2 5 21 | syl2anc |  | 
						
							| 23 |  | sstr |  | 
						
							| 24 | 22 23 | sylan |  | 
						
							| 25 |  | shub2 |  | 
						
							| 26 | 5 2 25 | syl2anc |  | 
						
							| 27 |  | sstr |  | 
						
							| 28 | 26 27 | sylan |  | 
						
							| 29 | 24 28 | jca |  | 
						
							| 30 | 29 | ex |  | 
						
							| 31 | 20 30 | impbid |  |