Database
COMPLEX HILBERT SPACE EXPLORER (DEPRECATED)
Properties of Hilbert subspaces
Orthomodular law
shlubi
Metamath Proof Explorer
Description: Hilbert lattice join is the least upper bound (among Hilbert lattice
elements) of two subspaces. (Contributed by NM , 11-Jun-2004)
(New usage is discouraged.)
Ref
Expression
Hypotheses
shlub.1
⊢ A ∈ S ℋ
shlub.2
⊢ B ∈ S ℋ
shlub.3
⊢ C ∈ C ℋ
Assertion
shlubi
⊢ A ⊆ C ∧ B ⊆ C ↔ A ∨ ℋ B ⊆ C
Proof
Step
Hyp
Ref
Expression
1
shlub.1
⊢ A ∈ S ℋ
2
shlub.2
⊢ B ∈ S ℋ
3
shlub.3
⊢ C ∈ C ℋ
4
shlub
⊢ A ∈ S ℋ ∧ B ∈ S ℋ ∧ C ∈ C ℋ → A ⊆ C ∧ B ⊆ C ↔ A ∨ ℋ B ⊆ C
5
1 2 3 4
mp3an
⊢ A ⊆ C ∧ B ⊆ C ↔ A ∨ ℋ B ⊆ C