Metamath Proof Explorer


Theorem shs00i

Description: Two subspaces are zero iff their join is zero. (Contributed by NM, 7-Aug-2004) (New usage is discouraged.)

Ref Expression
Hypotheses shne0.1 AS
shs00.2 BS
Assertion shs00i A=0B=0A+B=0

Proof

Step Hyp Ref Expression
1 shne0.1 AS
2 shs00.2 BS
3 oveq12 A=0B=0A+B=0+0
4 h0elsh 0S
5 4 shs0i 0+0=0
6 3 5 eqtrdi A=0B=0A+B=0
7 1 2 shsub1i AA+B
8 sseq2 A+B=0AA+BA0
9 7 8 mpbii A+B=0A0
10 shle0 ASA0A=0
11 1 10 ax-mp A0A=0
12 9 11 sylib A+B=0A=0
13 2 1 shsub2i BA+B
14 sseq2 A+B=0BA+BB0
15 13 14 mpbii A+B=0B0
16 shle0 BSB0B=0
17 2 16 ax-mp B0B=0
18 15 17 sylib A+B=0B=0
19 12 18 jca A+B=0A=0B=0
20 6 19 impbii A=0B=0A+B=0