Description: Two subspaces are zero iff their join is zero. (Contributed by NM, 7-Aug-2004) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | shne0.1 | |
|
shs00.2 | |
||
Assertion | shs00i | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | shne0.1 | |
|
2 | shs00.2 | |
|
3 | oveq12 | |
|
4 | h0elsh | |
|
5 | 4 | shs0i | |
6 | 3 5 | eqtrdi | |
7 | 1 2 | shsub1i | |
8 | sseq2 | |
|
9 | 7 8 | mpbii | |
10 | shle0 | |
|
11 | 1 10 | ax-mp | |
12 | 9 11 | sylib | |
13 | 2 1 | shsub2i | |
14 | sseq2 | |
|
15 | 13 14 | mpbii | |
16 | shle0 | |
|
17 | 2 16 | ax-mp | |
18 | 15 17 | sylib | |
19 | 12 18 | jca | |
20 | 6 19 | impbii | |