Database
COMPLEX HILBERT SPACE EXPLORER (DEPRECATED)
Subspaces and projections
Subspace sum, span, lattice join, lattice supremum
shscl
Next ⟩
shscom
Metamath Proof Explorer
Ascii
Unicode
Theorem
shscl
Description:
Closure of subspace sum.
(Contributed by
NM
, 15-Dec-2004)
(New usage is discouraged.)
Ref
Expression
Assertion
shscl
⊢
A
∈
S
ℋ
∧
B
∈
S
ℋ
→
A
+
ℋ
B
∈
S
ℋ
Proof
Step
Hyp
Ref
Expression
1
oveq1
⊢
A
=
if
A
∈
S
ℋ
A
ℋ
→
A
+
ℋ
B
=
if
A
∈
S
ℋ
A
ℋ
+
ℋ
B
2
1
eleq1d
⊢
A
=
if
A
∈
S
ℋ
A
ℋ
→
A
+
ℋ
B
∈
S
ℋ
↔
if
A
∈
S
ℋ
A
ℋ
+
ℋ
B
∈
S
ℋ
3
oveq2
⊢
B
=
if
B
∈
S
ℋ
B
ℋ
→
if
A
∈
S
ℋ
A
ℋ
+
ℋ
B
=
if
A
∈
S
ℋ
A
ℋ
+
ℋ
if
B
∈
S
ℋ
B
ℋ
4
3
eleq1d
⊢
B
=
if
B
∈
S
ℋ
B
ℋ
→
if
A
∈
S
ℋ
A
ℋ
+
ℋ
B
∈
S
ℋ
↔
if
A
∈
S
ℋ
A
ℋ
+
ℋ
if
B
∈
S
ℋ
B
ℋ
∈
S
ℋ
5
helsh
⊢
ℋ
∈
S
ℋ
6
5
elimel
⊢
if
A
∈
S
ℋ
A
ℋ
∈
S
ℋ
7
5
elimel
⊢
if
B
∈
S
ℋ
B
ℋ
∈
S
ℋ
8
6
7
shscli
⊢
if
A
∈
S
ℋ
A
ℋ
+
ℋ
if
B
∈
S
ℋ
B
ℋ
∈
S
ℋ
9
2
4
8
dedth2h
⊢
A
∈
S
ℋ
∧
B
∈
S
ℋ
→
A
+
ℋ
B
∈
S
ℋ