Metamath Proof Explorer


Theorem shscl

Description: Closure of subspace sum. (Contributed by NM, 15-Dec-2004) (New usage is discouraged.)

Ref Expression
Assertion shscl A S B S A + B S

Proof

Step Hyp Ref Expression
1 oveq1 A = if A S A A + B = if A S A + B
2 1 eleq1d A = if A S A A + B S if A S A + B S
3 oveq2 B = if B S B if A S A + B = if A S A + if B S B
4 3 eleq1d B = if B S B if A S A + B S if A S A + if B S B S
5 helsh S
6 5 elimel if A S A S
7 5 elimel if B S B S
8 6 7 shscli if A S A + if B S B S
9 2 4 8 dedth2h A S B S A + B S