Metamath Proof Explorer


Theorem shscli

Description: Closure of subspace sum. (Contributed by NM, 15-Oct-1999) (Revised by Mario Carneiro, 23-Dec-2013) (New usage is discouraged.)

Ref Expression
Hypotheses shscl.1 A S
shscl.2 B S
Assertion shscli A + B S

Proof

Step Hyp Ref Expression
1 shscl.1 A S
2 shscl.2 B S
3 shsss A S B S A + B
4 1 2 3 mp2an A + B
5 sh0 A S 0 A
6 1 5 ax-mp 0 A
7 sh0 B S 0 B
8 2 7 ax-mp 0 B
9 ax-hv0cl 0
10 9 hvaddid2i 0 + 0 = 0
11 10 eqcomi 0 = 0 + 0
12 rspceov 0 A 0 B 0 = 0 + 0 x A y B 0 = x + y
13 6 8 11 12 mp3an x A y B 0 = x + y
14 1 2 shseli 0 A + B x A y B 0 = x + y
15 13 14 mpbir 0 A + B
16 4 15 pm3.2i A + B 0 A + B
17 1 2 shseli x A + B z A w B x = z + w
18 1 2 shseli y A + B v A u B y = v + u
19 shaddcl A S z A v A z + v A
20 1 19 mp3an1 z A v A z + v A
21 20 ad2ant2r z A w B v A u B z + v A
22 21 ad2ant2r z A w B x = z + w v A u B y = v + u z + v A
23 shaddcl B S w B u B w + u B
24 2 23 mp3an1 w B u B w + u B
25 24 ad2ant2l z A w B v A u B w + u B
26 25 ad2ant2r z A w B x = z + w v A u B y = v + u w + u B
27 oveq12 x = z + w y = v + u x + y = z + w + v + u
28 27 ad2ant2l z A w B x = z + w v A u B y = v + u x + y = z + w + v + u
29 1 sheli z A z
30 1 sheli v A v
31 29 30 anim12i z A v A z v
32 2 sheli w B w
33 2 sheli u B u
34 32 33 anim12i w B u B w u
35 hvadd4 z v w u z + v + w + u = z + w + v + u
36 31 34 35 syl2an z A v A w B u B z + v + w + u = z + w + v + u
37 36 an4s z A w B v A u B z + v + w + u = z + w + v + u
38 37 ad2ant2r z A w B x = z + w v A u B y = v + u z + v + w + u = z + w + v + u
39 28 38 eqtr4d z A w B x = z + w v A u B y = v + u x + y = z + v + w + u
40 rspceov z + v A w + u B x + y = z + v + w + u f A g B x + y = f + g
41 22 26 39 40 syl3anc z A w B x = z + w v A u B y = v + u f A g B x + y = f + g
42 41 ancoms v A u B y = v + u z A w B x = z + w f A g B x + y = f + g
43 42 exp43 v A u B y = v + u z A w B x = z + w f A g B x + y = f + g
44 43 rexlimivv v A u B y = v + u z A w B x = z + w f A g B x + y = f + g
45 44 com3l z A w B x = z + w v A u B y = v + u f A g B x + y = f + g
46 45 rexlimivv z A w B x = z + w v A u B y = v + u f A g B x + y = f + g
47 46 imp z A w B x = z + w v A u B y = v + u f A g B x + y = f + g
48 17 18 47 syl2anb x A + B y A + B f A g B x + y = f + g
49 1 2 shseli x + y A + B f A g B x + y = f + g
50 48 49 sylibr x A + B y A + B x + y A + B
51 50 rgen2 x A + B y A + B x + y A + B
52 shmulcl A S x v A x v A
53 1 52 mp3an1 x v A x v A
54 53 adantrr x v A u B y = v + u x v A
55 shmulcl B S x u B x u B
56 2 55 mp3an1 x u B x u B
57 56 adantrr x u B y = v + u x u B
58 57 adantrl x v A u B y = v + u x u B
59 oveq2 y = v + u x y = x v + u
60 59 adantl u B y = v + u x y = x v + u
61 60 ad2antll x v A u B y = v + u x y = x v + u
62 id x x
63 ax-hvdistr1 x v u x v + u = x v + x u
64 62 30 33 63 syl3an x v A u B x v + u = x v + x u
65 64 3expb x v A u B x v + u = x v + x u
66 65 adantrrr x v A u B y = v + u x v + u = x v + x u
67 61 66 eqtrd x v A u B y = v + u x y = x v + x u
68 rspceov x v A x u B x y = x v + x u f A g B x y = f + g
69 54 58 67 68 syl3anc x v A u B y = v + u f A g B x y = f + g
70 69 ancoms v A u B y = v + u x f A g B x y = f + g
71 70 exp42 v A u B y = v + u x f A g B x y = f + g
72 71 imp v A u B y = v + u x f A g B x y = f + g
73 72 rexlimivv v A u B y = v + u x f A g B x y = f + g
74 73 impcom x v A u B y = v + u f A g B x y = f + g
75 18 74 sylan2b x y A + B f A g B x y = f + g
76 1 2 shseli x y A + B f A g B x y = f + g
77 75 76 sylibr x y A + B x y A + B
78 77 rgen2 x y A + B x y A + B
79 51 78 pm3.2i x A + B y A + B x + y A + B x y A + B x y A + B
80 issh2 A + B S A + B 0 A + B x A + B y A + B x + y A + B x y A + B x y A + B
81 16 79 80 mpbir2an A + B S