Metamath Proof Explorer


Theorem shsel

Description: Membership in the subspace sum of two Hilbert subspaces. (Contributed by NM, 14-Dec-2004) (Revised by Mario Carneiro, 29-Jan-2014) (New usage is discouraged.)

Ref Expression
Assertion shsel A S B S C A + B x A y B C = x + y

Proof

Step Hyp Ref Expression
1 shsval A S B S A + B = + A × B
2 1 eleq2d A S B S C A + B C + A × B
3 ax-hfvadd + : ×
4 ffn + : × + Fn ×
5 3 4 ax-mp + Fn ×
6 shss A S A
7 shss B S B
8 xpss12 A B A × B ×
9 6 7 8 syl2an A S B S A × B ×
10 ovelimab + Fn × A × B × C + A × B x A y B C = x + y
11 5 9 10 sylancr A S B S C + A × B x A y B C = x + y
12 2 11 bitrd A S B S C A + B x A y B C = x + y