Metamath Proof Explorer


Theorem shseli

Description: Membership in subspace sum. (Contributed by NM, 4-May-2000) (New usage is discouraged.)

Ref Expression
Hypotheses shscl.1 A S
shscl.2 B S
Assertion shseli C A + B x A y B C = x + y

Proof

Step Hyp Ref Expression
1 shscl.1 A S
2 shscl.2 B S
3 shsel A S B S C A + B x A y B C = x + y
4 1 2 3 mp2an C A + B x A y B C = x + y