Metamath Proof Explorer


Theorem shsidmi

Description: Idempotent law for Hilbert subspace sum. (Contributed by NM, 6-Jun-2004) (New usage is discouraged.)

Ref Expression
Hypothesis shsidm.1 A S
Assertion shsidmi A + A = A

Proof

Step Hyp Ref Expression
1 shsidm.1 A S
2 1 1 shseli x A + A y A z A x = y + z
3 shaddcl A S y A z A y + z A
4 1 3 mp3an1 y A z A y + z A
5 eleq1 x = y + z x A y + z A
6 4 5 syl5ibrcom y A z A x = y + z x A
7 6 rexlimivv y A z A x = y + z x A
8 2 7 sylbi x A + A x A
9 8 ssriv A + A A
10 1 1 shsub1i A A + A
11 9 10 eqssi A + A = A