Metamath Proof Explorer


Theorem shsleji

Description: Subspace sum is smaller than Hilbert lattice join. Remark in Kalmbach p. 65. (Contributed by NM, 19-Oct-1999) (Revised by Mario Carneiro, 15-May-2014) (New usage is discouraged.)

Ref Expression
Hypotheses shincl.1 A S
shincl.2 B S
Assertion shsleji A + B A B

Proof

Step Hyp Ref Expression
1 shincl.1 A S
2 shincl.2 B S
3 1 2 shseli x A + B y A z B x = y + z
4 ssun1 A A B
5 1 2 shunssji A B A B
6 4 5 sstri A A B
7 6 sseli y A y A B
8 ssun2 B A B
9 8 5 sstri B A B
10 9 sseli z B z A B
11 shjcl A S B S A B C
12 1 2 11 mp2an A B C
13 12 chshii A B S
14 shaddcl A B S y A B z A B y + z A B
15 13 14 mp3an1 y A B z A B y + z A B
16 7 10 15 syl2an y A z B y + z A B
17 eleq1a y + z A B x = y + z x A B
18 16 17 syl y A z B x = y + z x A B
19 18 rexlimivv y A z B x = y + z x A B
20 3 19 sylbi x A + B x A B
21 20 ssriv A + B A B