Metamath Proof Explorer


Theorem shslubi

Description: The least upper bound law for Hilbert subspace sum. (Contributed by NM, 15-Jun-2004) (New usage is discouraged.)

Ref Expression
Hypotheses shslub.1 A S
shslub.2 B S
shslub.3 C S
Assertion shslubi A C B C A + B C

Proof

Step Hyp Ref Expression
1 shslub.1 A S
2 shslub.2 B S
3 shslub.3 C S
4 1 3 2 shlessi A C A + B C + B
5 3 2 shscomi C + B = B + C
6 4 5 sseqtrdi A C A + B B + C
7 2 3 3 shlessi B C B + C C + C
8 3 shsidmi C + C = C
9 7 8 sseqtrdi B C B + C C
10 6 9 sylan9ss A C B C A + B C
11 1 2 shsub1i A A + B
12 sstr A A + B A + B C A C
13 11 12 mpan A + B C A C
14 2 1 shsub2i B A + B
15 sstr B A + B A + B C B C
16 14 15 mpan A + B C B C
17 13 16 jca A + B C A C B C
18 10 17 impbii A C B C A + B C