Metamath Proof Explorer


Theorem shsubcl

Description: Closure of vector subtraction in a subspace of a Hilbert space. (Contributed by NM, 18-Oct-1999) (New usage is discouraged.)

Ref Expression
Assertion shsubcl H S A H B H A - B H

Proof

Step Hyp Ref Expression
1 shss H S H
2 1 sseld H S A H A
3 1 sseld H S B H B
4 2 3 anim12d H S A H B H A B
5 4 3impib H S A H B H A B
6 hvsubval A B A - B = A + -1 B
7 5 6 syl H S A H B H A - B = A + -1 B
8 neg1cn 1
9 shmulcl H S 1 B H -1 B H
10 8 9 mp3an2 H S B H -1 B H
11 10 3adant2 H S A H B H -1 B H
12 shaddcl H S A H -1 B H A + -1 B H
13 11 12 syld3an3 H S A H B H A + -1 B H
14 7 13 eqeltrd H S A H B H A - B H