Metamath Proof Explorer


Theorem shsva

Description: Vector sum belongs to subspace sum. (Contributed by NM, 15-Dec-2004) (New usage is discouraged.)

Ref Expression
Assertion shsva A S B S C A D B C + D A + B

Proof

Step Hyp Ref Expression
1 eqid C + D = C + D
2 rspceov C A D B C + D = C + D x A y B C + D = x + y
3 1 2 mp3an3 C A D B x A y B C + D = x + y
4 shsel A S B S C + D A + B x A y B C + D = x + y
5 3 4 syl5ibr A S B S C A D B C + D A + B