Metamath Proof Explorer


Theorem shsvai

Description: Vector sum belongs to subspace sum. (Contributed by NM, 17-Oct-1999) (New usage is discouraged.)

Ref Expression
Hypotheses shincl.1 A S
shincl.2 B S
Assertion shsvai C A D B C + D A + B

Proof

Step Hyp Ref Expression
1 shincl.1 A S
2 shincl.2 B S
3 shsva A S B S C A D B C + D A + B
4 1 2 3 mp2an C A D B C + D A + B