Metamath Proof Explorer


Theorem shsval

Description: Value of subspace sum of two Hilbert space subspaces. Definition of subspace sum in Kalmbach p. 65. (Contributed by NM, 16-Oct-1999) (Revised by Mario Carneiro, 23-Dec-2013) (New usage is discouraged.)

Ref Expression
Assertion shsval A S B S A + B = + A × B

Proof

Step Hyp Ref Expression
1 xpeq12 x = A y = B x × y = A × B
2 1 imaeq2d x = A y = B + x × y = + A × B
3 df-shs + = x S , y S + x × y
4 hilablo + AbelOp
5 imaexg + AbelOp + A × B V
6 4 5 ax-mp + A × B V
7 2 3 6 ovmpoa A S B S A + B = + A × B