Metamath Proof Explorer


Theorem shsval2i

Description: An alternate way to express subspace sum. (Contributed by NM, 25-Nov-2004) (New usage is discouraged.)

Ref Expression
Hypotheses shlesb1.1 A S
shlesb1.2 B S
Assertion shsval2i A + B = x S | A B x

Proof

Step Hyp Ref Expression
1 shlesb1.1 A S
2 shlesb1.2 B S
3 ssun1 A A B
4 ssintub A B x S | A B x
5 3 4 sstri A x S | A B x
6 ssun2 B A B
7 6 4 sstri B x S | A B x
8 5 7 pm3.2i A x S | A B x B x S | A B x
9 ssrab2 x S | A B x S
10 1 2 shscli A + B S
11 1 2 shunssi A B A + B
12 sseq2 x = A + B A B x A B A + B
13 12 rspcev A + B S A B A + B x S A B x
14 10 11 13 mp2an x S A B x
15 rabn0 x S | A B x x S A B x
16 14 15 mpbir x S | A B x
17 shintcl x S | A B x S x S | A B x x S | A B x S
18 9 16 17 mp2an x S | A B x S
19 1 2 18 shslubi A x S | A B x B x S | A B x A + B x S | A B x
20 8 19 mpbi A + B x S | A B x
21 12 elrab A + B x S | A B x A + B S A B A + B
22 10 11 21 mpbir2an A + B x S | A B x
23 intss1 A + B x S | A B x x S | A B x A + B
24 22 23 ax-mp x S | A B x A + B
25 20 24 eqssi A + B = x S | A B x