Metamath Proof Explorer


Theorem shsval3i

Description: An alternate way to express subspace sum. (Contributed by NM, 25-Nov-2004) (New usage is discouraged.)

Ref Expression
Hypotheses shlesb1.1 A S
shlesb1.2 B S
Assertion shsval3i A + B = span A B

Proof

Step Hyp Ref Expression
1 shlesb1.1 A S
2 shlesb1.2 B S
3 1 2 shsval2i A + B = x S | A B x
4 1 shssii A
5 2 shssii B
6 4 5 unssi A B
7 spanval A B span A B = x S | A B x
8 6 7 ax-mp span A B = x S | A B x
9 3 8 eqtr4i A + B = span A B