Metamath Proof Explorer


Theorem shsvs

Description: Vector subtraction belongs to subspace sum. (Contributed by NM, 15-Dec-2004) (New usage is discouraged.)

Ref Expression
Assertion shsvs A S B S C A D B C - D A + B

Proof

Step Hyp Ref Expression
1 shscl A S B S A + B S
2 1 a1d A S B S C A D B A + B S
3 shsel1 A S B S C A C A + B
4 3 adantrd A S B S C A D B C A + B
5 shsel2 A S B S D B D A + B
6 5 adantld A S B S C A D B D A + B
7 2 4 6 3jcad A S B S C A D B A + B S C A + B D A + B
8 shsubcl A + B S C A + B D A + B C - D A + B
9 7 8 syl6 A S B S C A D B C - D A + B