Metamath Proof Explorer


Theorem sigaras

Description: Signed area is additive by the second argument. (Contributed by Saveliy Skresanov, 19-Sep-2017)

Ref Expression
Hypothesis sigar G = x , y x y
Assertion sigaras A B C A G B + C = A G B + A G C

Proof

Step Hyp Ref Expression
1 sigar G = x , y x y
2 simp1 A B C A
3 simp2 A B C B
4 simp3 A B C C
5 3 4 addcld A B C B + C
6 1 sigarac A B + C A G B + C = B + C G A
7 2 5 6 syl2anc A B C A G B + C = B + C G A
8 1 sigaraf B A C B + C G A = B G A + C G A
9 8 negeqd B A C B + C G A = B G A + C G A
10 9 3com12 A B C B + C G A = B G A + C G A
11 3simpa A B C A B
12 11 ancomd A B C B A
13 1 sigarim B A B G A
14 12 13 syl A B C B G A
15 14 recnd A B C B G A
16 3simpb A B C A C
17 16 ancomd A B C C A
18 1 sigarim C A C G A
19 17 18 syl A B C C G A
20 19 recnd A B C C G A
21 15 20 negdid A B C B G A + C G A = - B G A + C G A
22 10 21 eqtrd A B C B + C G A = - B G A + C G A
23 1 sigarac A B A G B = B G A
24 2 3 23 syl2anc A B C A G B = B G A
25 24 eqcomd A B C B G A = A G B
26 1 sigarac A C A G C = C G A
27 2 4 26 syl2anc A B C A G C = C G A
28 27 eqcomd A B C C G A = A G C
29 25 28 oveq12d A B C - B G A + C G A = A G B + A G C
30 7 22 29 3eqtrd A B C A G B + C = A G B + A G C