Metamath Proof Explorer


Theorem sigarcol

Description: Given three points A , B and C such that -. A = B , the point C lies on the line going through A and B iff the corresponding signed area is zero. That justifies the usage of signed area as a collinearity indicator. (Contributed by Saveliy Skresanov, 22-Sep-2017)

Ref Expression
Hypotheses sigarcol.sigar G = x , y x y
sigarcol.a φ A B C
sigarcol.b φ ¬ A = B
Assertion sigarcol φ A C G B C = 0 t C = B + t A B

Proof

Step Hyp Ref Expression
1 sigarcol.sigar G = x , y x y
2 sigarcol.a φ A B C
3 sigarcol.b φ ¬ A = B
4 2 simp2d φ B
5 2 simp3d φ C
6 2 simp1d φ A
7 4 5 6 3jca φ B C A
8 7 adantr φ A C G B C = 0 B C A
9 3 adantr φ A C G B C = 0 ¬ A = B
10 1 sigarperm A B C A C G B C = B A G C A
11 2 10 syl φ A C G B C = B A G C A
12 1 sigarperm B C A B A G C A = C B G A B
13 7 12 syl φ B A G C A = C B G A B
14 11 13 eqtrd φ A C G B C = C B G A B
15 14 eqeq1d φ A C G B C = 0 C B G A B = 0
16 15 biimpa φ A C G B C = 0 C B G A B = 0
17 1 8 9 16 sigardiv φ A C G B C = 0 C B A B
18 5 4 subcld φ C B
19 18 adantr φ A C G B C = 0 C B
20 6 4 subcld φ A B
21 20 adantr φ A C G B C = 0 A B
22 6 adantr φ A C G B C = 0 A
23 4 adantr φ A C G B C = 0 B
24 9 neqned φ A C G B C = 0 A B
25 22 23 24 subne0d φ A C G B C = 0 A B 0
26 19 21 25 divcan1d φ A C G B C = 0 C B A B A B = C B
27 26 oveq2d φ A C G B C = 0 B + C B A B A B = B + C - B
28 5 adantr φ A C G B C = 0 C
29 23 28 pncan3d φ A C G B C = 0 B + C - B = C
30 27 29 eqtr2d φ A C G B C = 0 C = B + C B A B A B
31 oveq1 t = C B A B t A B = C B A B A B
32 31 oveq2d t = C B A B B + t A B = B + C B A B A B
33 32 rspceeqv C B A B C = B + C B A B A B t C = B + t A B
34 17 30 33 syl2anc φ A C G B C = 0 t C = B + t A B
35 34 ex φ A C G B C = 0 t C = B + t A B
36 14 3ad2ant1 φ t C = B + t A B A C G B C = C B G A B
37 4 3ad2ant1 φ t C = B + t A B B
38 simp2 φ t C = B + t A B t
39 38 recnd φ t C = B + t A B t
40 6 3ad2ant1 φ t C = B + t A B A
41 40 37 subcld φ t C = B + t A B A B
42 39 41 mulcld φ t C = B + t A B t A B
43 simp3 φ t C = B + t A B C = B + t A B
44 37 42 43 mvrladdd φ t C = B + t A B C B = t A B
45 44 oveq1d φ t C = B + t A B C B G A B = t A B G A B
46 39 41 mulcomd φ t C = B + t A B t A B = A B t
47 46 oveq1d φ t C = B + t A B t A B G A B = A B t G A B
48 45 47 eqtrd φ t C = B + t A B C B G A B = A B t G A B
49 41 39 mulcld φ t C = B + t A B A B t
50 1 sigarac A B t A B A B t G A B = A B G A B t
51 49 41 50 syl2anc φ t C = B + t A B A B t G A B = A B G A B t
52 1 sigarls A B A B t A B G A B t = A B G A B t
53 41 41 38 52 syl3anc φ t C = B + t A B A B G A B t = A B G A B t
54 1 sigarid A B A B G A B = 0
55 41 54 syl φ t C = B + t A B A B G A B = 0
56 55 oveq1d φ t C = B + t A B A B G A B t = 0 t
57 39 mul02d φ t C = B + t A B 0 t = 0
58 53 56 57 3eqtrd φ t C = B + t A B A B G A B t = 0
59 58 negeqd φ t C = B + t A B A B G A B t = 0
60 neg0 0 = 0
61 60 a1i φ t C = B + t A B 0 = 0
62 51 59 61 3eqtrd φ t C = B + t A B A B t G A B = 0
63 36 48 62 3eqtrd φ t C = B + t A B A C G B C = 0
64 63 rexlimdv3a φ t C = B + t A B A C G B C = 0
65 35 64 impbid φ A C G B C = 0 t C = B + t A B