Step |
Hyp |
Ref |
Expression |
1 |
|
sigarcol.sigar |
|
2 |
|
sigarcol.a |
|
3 |
|
sigarcol.b |
|
4 |
2
|
simp2d |
|
5 |
2
|
simp3d |
|
6 |
2
|
simp1d |
|
7 |
4 5 6
|
3jca |
|
8 |
7
|
adantr |
|
9 |
3
|
adantr |
|
10 |
1
|
sigarperm |
|
11 |
2 10
|
syl |
|
12 |
1
|
sigarperm |
|
13 |
7 12
|
syl |
|
14 |
11 13
|
eqtrd |
|
15 |
14
|
eqeq1d |
|
16 |
15
|
biimpa |
|
17 |
1 8 9 16
|
sigardiv |
|
18 |
5 4
|
subcld |
|
19 |
18
|
adantr |
|
20 |
6 4
|
subcld |
|
21 |
20
|
adantr |
|
22 |
6
|
adantr |
|
23 |
4
|
adantr |
|
24 |
9
|
neqned |
|
25 |
22 23 24
|
subne0d |
|
26 |
19 21 25
|
divcan1d |
|
27 |
26
|
oveq2d |
|
28 |
5
|
adantr |
|
29 |
23 28
|
pncan3d |
|
30 |
27 29
|
eqtr2d |
|
31 |
|
oveq1 |
|
32 |
31
|
oveq2d |
|
33 |
32
|
rspceeqv |
|
34 |
17 30 33
|
syl2anc |
|
35 |
34
|
ex |
|
36 |
14
|
3ad2ant1 |
|
37 |
4
|
3ad2ant1 |
|
38 |
|
simp2 |
|
39 |
38
|
recnd |
|
40 |
6
|
3ad2ant1 |
|
41 |
40 37
|
subcld |
|
42 |
39 41
|
mulcld |
|
43 |
|
simp3 |
|
44 |
37 42 43
|
mvrladdd |
|
45 |
44
|
oveq1d |
|
46 |
39 41
|
mulcomd |
|
47 |
46
|
oveq1d |
|
48 |
45 47
|
eqtrd |
|
49 |
41 39
|
mulcld |
|
50 |
1
|
sigarac |
|
51 |
49 41 50
|
syl2anc |
|
52 |
1
|
sigarls |
|
53 |
41 41 38 52
|
syl3anc |
|
54 |
1
|
sigarid |
|
55 |
41 54
|
syl |
|
56 |
55
|
oveq1d |
|
57 |
39
|
mul02d |
|
58 |
53 56 57
|
3eqtrd |
|
59 |
58
|
negeqd |
|
60 |
|
neg0 |
|
61 |
60
|
a1i |
|
62 |
51 59 61
|
3eqtrd |
|
63 |
36 48 62
|
3eqtrd |
|
64 |
63
|
rexlimdv3a |
|
65 |
35 64
|
impbid |
|