Metamath Proof Explorer


Theorem sigardiv

Description: If signed area between vectors B - A and C - A is zero, then those vectors lie on the same line. (Contributed by Saveliy Skresanov, 22-Sep-2017)

Ref Expression
Hypotheses sigar G = x , y x y
sigardiv.a φ A B C
sigardiv.b φ ¬ C = A
sigardiv.c φ B A G C A = 0
Assertion sigardiv φ B A C A

Proof

Step Hyp Ref Expression
1 sigar G = x , y x y
2 sigardiv.a φ A B C
3 sigardiv.b φ ¬ C = A
4 sigardiv.c φ B A G C A = 0
5 2 simp2d φ B
6 2 simp1d φ A
7 5 6 subcld φ B A
8 2 simp3d φ C
9 8 6 subcld φ C A
10 3 neqned φ C A
11 8 6 10 subne0d φ C A 0
12 7 9 11 cjdivd φ B A C A = B A C A
13 7 cjcld φ B A
14 9 cjcld φ C A
15 9 11 cjne0d φ C A 0
16 13 14 9 15 11 divcan5rd φ B A C A C A C A = B A C A
17 13 9 mulcld φ B A C A
18 1 sigarval B A C A B A G C A = B A C A
19 7 9 18 syl2anc φ B A G C A = B A C A
20 19 4 eqtr3d φ B A C A = 0
21 17 20 reim0bd φ B A C A
22 9 14 mulcomd φ C A C A = C A C A
23 9 cjmulrcld φ C A C A
24 22 23 eqeltrrd φ C A C A
25 14 9 15 11 mulne0d φ C A C A 0
26 21 24 25 redivcld φ B A C A C A C A
27 16 26 eqeltrrd φ B A C A
28 12 27 eqeltrd φ B A C A
29 28 cjred φ B A C A = B A C A
30 7 9 11 divcld φ B A C A
31 30 cjcjd φ B A C A = B A C A
32 29 31 eqtr3d φ B A C A = B A C A
33 32 28 eqeltrrd φ B A C A