| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sigar |  | 
						
							| 2 |  | sigardiv.a |  | 
						
							| 3 |  | sigardiv.b |  | 
						
							| 4 |  | sigardiv.c |  | 
						
							| 5 | 2 | simp2d |  | 
						
							| 6 | 2 | simp1d |  | 
						
							| 7 | 5 6 | subcld |  | 
						
							| 8 | 2 | simp3d |  | 
						
							| 9 | 8 6 | subcld |  | 
						
							| 10 | 3 | neqned |  | 
						
							| 11 | 8 6 10 | subne0d |  | 
						
							| 12 | 7 9 11 | cjdivd |  | 
						
							| 13 | 7 | cjcld |  | 
						
							| 14 | 9 | cjcld |  | 
						
							| 15 | 9 11 | cjne0d |  | 
						
							| 16 | 13 14 9 15 11 | divcan5rd |  | 
						
							| 17 | 13 9 | mulcld |  | 
						
							| 18 | 1 | sigarval |  | 
						
							| 19 | 7 9 18 | syl2anc |  | 
						
							| 20 | 19 4 | eqtr3d |  | 
						
							| 21 | 17 20 | reim0bd |  | 
						
							| 22 | 9 14 | mulcomd |  | 
						
							| 23 | 9 | cjmulrcld |  | 
						
							| 24 | 22 23 | eqeltrrd |  | 
						
							| 25 | 14 9 15 11 | mulne0d |  | 
						
							| 26 | 21 24 25 | redivcld |  | 
						
							| 27 | 16 26 | eqeltrrd |  | 
						
							| 28 | 12 27 | eqeltrd |  | 
						
							| 29 | 28 | cjred |  | 
						
							| 30 | 7 9 11 | divcld |  | 
						
							| 31 | 30 | cjcjd |  | 
						
							| 32 | 29 31 | eqtr3d |  | 
						
							| 33 | 32 28 | eqeltrrd |  |