Metamath Proof Explorer


Theorem sigarexp

Description: Expand the signed area formula by linearity. (Contributed by Saveliy Skresanov, 20-Sep-2017)

Ref Expression
Hypothesis sigar G = x , y x y
Assertion sigarexp A B C A C G B C = A G B - A G C - C G B

Proof

Step Hyp Ref Expression
1 sigar G = x , y x y
2 simp2 A B C B
3 simp3 A B C C
4 2 3 subcld A B C B C
5 1 sigarmf A B C C A C G B C = A G B C C G B C
6 4 5 syld3an2 A B C A C G B C = A G B C C G B C
7 1 sigarms A B C A G B C = A G B A G C
8 7 oveq1d A B C A G B C C G B C = A G B - A G C - C G B C
9 1 sigarms C B C C G B C = C G B C G C
10 3 9 syld3an1 A B C C G B C = C G B C G C
11 1 sigarid C C G C = 0
12 3 11 syl A B C C G C = 0
13 12 oveq2d A B C C G B C G C = C G B 0
14 1 sigarim C B C G B
15 14 recnd C B C G B
16 3 2 15 syl2anc A B C C G B
17 16 subid1d A B C C G B 0 = C G B
18 10 13 17 3eqtrd A B C C G B C = C G B
19 18 oveq2d A B C A G B - A G C - C G B C = A G B - A G C - C G B
20 6 8 19 3eqtrd A B C A C G B C = A G B - A G C - C G B