Metamath Proof Explorer


Theorem sigariz

Description: If signed area is zero, the signed area with swapped arguments is also zero. Deduction version. (Contributed by Saveliy Skresanov, 23-Sep-2017)

Ref Expression
Hypotheses sigarimcd.sigar G = x , y x y
sigarimcd.a φ A B
sigariz.a φ A G B = 0
Assertion sigariz φ B G A = 0

Proof

Step Hyp Ref Expression
1 sigarimcd.sigar G = x , y x y
2 sigarimcd.a φ A B
3 sigariz.a φ A G B = 0
4 1 sigarac A B A G B = B G A
5 2 4 syl φ A G B = B G A
6 3 5 eqtr3d φ 0 = B G A
7 6 negeqd φ 0 = B G A
8 neg0 0 = 0
9 8 a1i φ 0 = 0
10 2 ancomd φ B A
11 1 10 sigarimcd φ B G A
12 11 negnegd φ B G A = B G A
13 7 9 12 3eqtr3rd φ B G A = 0