Metamath Proof Explorer


Theorem siii

Description: Inference from sii . (Contributed by NM, 20-Nov-2007) (New usage is discouraged.)

Ref Expression
Hypotheses siii.1 X = BaseSet U
siii.6 N = norm CV U
siii.7 P = 𝑖OLD U
siii.9 U CPreHil OLD
siii.a A X
siii.b B X
Assertion siii A P B N A N B

Proof

Step Hyp Ref Expression
1 siii.1 X = BaseSet U
2 siii.6 N = norm CV U
3 siii.7 P = 𝑖OLD U
4 siii.9 U CPreHil OLD
5 siii.a A X
6 siii.b B X
7 oveq2 B = 0 vec U A P B = A P 0 vec U
8 4 phnvi U NrmCVec
9 eqid 0 vec U = 0 vec U
10 1 9 3 dip0r U NrmCVec A X A P 0 vec U = 0
11 8 5 10 mp2an A P 0 vec U = 0
12 7 11 eqtrdi B = 0 vec U A P B = 0
13 12 abs00bd B = 0 vec U A P B = 0
14 1 2 nvge0 U NrmCVec A X 0 N A
15 8 5 14 mp2an 0 N A
16 1 2 nvge0 U NrmCVec B X 0 N B
17 8 6 16 mp2an 0 N B
18 1 2 8 5 nvcli N A
19 1 2 8 6 nvcli N B
20 18 19 mulge0i 0 N A 0 N B 0 N A N B
21 15 17 20 mp2an 0 N A N B
22 13 21 eqbrtrdi B = 0 vec U A P B N A N B
23 1 3 dipcl U NrmCVec A X B X A P B
24 8 5 6 23 mp3an A P B
25 absval A P B A P B = A P B A P B
26 24 25 ax-mp A P B = A P B A P B
27 19 recni N B
28 27 sqeq0i N B 2 = 0 N B = 0
29 1 9 2 nvz U NrmCVec B X N B = 0 B = 0 vec U
30 8 6 29 mp2an N B = 0 B = 0 vec U
31 28 30 bitri N B 2 = 0 B = 0 vec U
32 31 necon3bii N B 2 0 B 0 vec U
33 1 3 dipcl U NrmCVec B X A X B P A
34 8 6 5 33 mp3an B P A
35 19 resqcli N B 2
36 35 recni N B 2
37 34 36 divcan1zi N B 2 0 B P A N B 2 N B 2 = B P A
38 32 37 sylbir B 0 vec U B P A N B 2 N B 2 = B P A
39 1 3 dipcj U NrmCVec A X B X A P B = B P A
40 8 5 6 39 mp3an A P B = B P A
41 38 40 eqtr4di B 0 vec U B P A N B 2 N B 2 = A P B
42 41 oveq2d B 0 vec U A P B B P A N B 2 N B 2 = A P B A P B
43 42 fveq2d B 0 vec U A P B B P A N B 2 N B 2 = A P B A P B
44 26 43 eqtr4id B 0 vec U A P B = A P B B P A N B 2 N B 2
45 38 eqcomd B 0 vec U B P A = B P A N B 2 N B 2
46 34 36 divclzi N B 2 0 B P A N B 2
47 32 46 sylbir B 0 vec U B P A N B 2
48 div23 B P A A P B N B 2 N B 2 0 B P A A P B N B 2 = B P A N B 2 A P B
49 34 24 48 mp3an12 N B 2 N B 2 0 B P A A P B N B 2 = B P A N B 2 A P B
50 36 49 mpan N B 2 0 B P A A P B N B 2 = B P A N B 2 A P B
51 32 50 sylbir B 0 vec U B P A A P B N B 2 = B P A N B 2 A P B
52 1 3 ipipcj U NrmCVec A X B X A P B B P A = A P B 2
53 8 5 6 52 mp3an A P B B P A = A P B 2
54 24 34 53 mulcomli B P A A P B = A P B 2
55 54 oveq1i B P A A P B N B 2 = A P B 2 N B 2
56 51 55 eqtr3di B 0 vec U B P A N B 2 A P B = A P B 2 N B 2
57 24 abscli A P B
58 57 resqcli A P B 2
59 58 35 redivclzi N B 2 0 A P B 2 N B 2
60 32 59 sylbir B 0 vec U A P B 2 N B 2
61 56 60 eqeltrd B 0 vec U B P A N B 2 A P B
62 30 necon3bii N B 0 B 0 vec U
63 19 sqgt0i N B 0 0 < N B 2
64 62 63 sylbir B 0 vec U 0 < N B 2
65 57 sqge0i 0 A P B 2
66 divge0 A P B 2 0 A P B 2 N B 2 0 < N B 2 0 A P B 2 N B 2
67 58 65 66 mpanl12 N B 2 0 < N B 2 0 A P B 2 N B 2
68 35 64 67 sylancr B 0 vec U 0 A P B 2 N B 2
69 68 56 breqtrrd B 0 vec U 0 B P A N B 2 A P B
70 eqid - v U = - v U
71 eqid 𝑠OLD U = 𝑠OLD U
72 1 2 3 4 5 6 70 71 siilem2 B P A N B 2 B P A N B 2 A P B 0 B P A N B 2 A P B B P A = B P A N B 2 N B 2 A P B B P A N B 2 N B 2 N A N B
73 47 61 69 72 syl3anc B 0 vec U B P A = B P A N B 2 N B 2 A P B B P A N B 2 N B 2 N A N B
74 45 73 mpd B 0 vec U A P B B P A N B 2 N B 2 N A N B
75 44 74 eqbrtrd B 0 vec U A P B N A N B
76 22 75 pm2.61ine A P B N A N B