Metamath Proof Explorer


Theorem simpr21

Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012) (Proof shortened by Wolf Lammen, 24-Jun-2022)

Ref Expression
Assertion simpr21 η θ φ ψ χ τ φ

Proof

Step Hyp Ref Expression
1 simpr1 η φ ψ χ φ
2 1 3ad2antr2 η θ φ ψ χ τ φ