Metamath Proof Explorer


Theorem simpr2l

Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012) (Proof shortened by Wolf Lammen, 24-Jun-2022)

Ref Expression
Assertion simpr2l τ χ φ ψ θ φ

Proof

Step Hyp Ref Expression
1 simprl τ φ ψ φ
2 1 3ad2antr2 τ χ φ ψ θ φ