Metamath Proof Explorer


Theorem simpr2r

Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012) (Proof shortened by Wolf Lammen, 24-Jun-2022)

Ref Expression
Assertion simpr2r τ χ φ ψ θ ψ

Proof

Step Hyp Ref Expression
1 simprr τ φ ψ ψ
2 1 3ad2antr2 τ χ φ ψ θ ψ