Metamath Proof Explorer


Theorem sin0

Description: Value of the sine function at 0. (Contributed by Steve Rodriguez, 14-Mar-2005)

Ref Expression
Assertion sin0 sin 0 = 0

Proof

Step Hyp Ref Expression
1 neg0 0 = 0
2 1 fveq2i sin -0 = sin 0
3 0cn 0
4 sinneg 0 sin -0 = sin 0
5 3 4 ax-mp sin -0 = sin 0
6 2 5 eqtr3i sin 0 = sin 0
7 sincl 0 sin 0
8 3 7 ax-mp sin 0
9 8 eqnegi sin 0 = sin 0 sin 0 = 0
10 6 9 mpbi sin 0 = 0