Metamath Proof Explorer


Theorem sin01bnd

Description: Bounds on the sine of a positive real number less than or equal to 1. (Contributed by Paul Chapman, 19-Jan-2008) (Revised by Mario Carneiro, 30-Apr-2014)

Ref Expression
Assertion sin01bnd A 0 1 A A 3 3 < sin A sin A < A

Proof

Step Hyp Ref Expression
1 0xr 0 *
2 1re 1
3 elioc2 0 * 1 A 0 1 A 0 < A A 1
4 1 2 3 mp2an A 0 1 A 0 < A A 1
5 4 simp1bi A 0 1 A
6 3nn0 3 0
7 reexpcl A 3 0 A 3
8 5 6 7 sylancl A 0 1 A 3
9 6nn 6
10 nndivre A 3 6 A 3 6
11 8 9 10 sylancl A 0 1 A 3 6
12 5 11 resubcld A 0 1 A A 3 6
13 12 recnd A 0 1 A A 3 6
14 ax-icn i
15 5 recnd A 0 1 A
16 mulcl i A i A
17 14 15 16 sylancr A 0 1 i A
18 4nn0 4 0
19 eqid n 0 i A n n ! = n 0 i A n n !
20 19 eftlcl i A 4 0 k 4 n 0 i A n n ! k
21 17 18 20 sylancl A 0 1 k 4 n 0 i A n n ! k
22 21 imcld A 0 1 k 4 n 0 i A n n ! k
23 22 recnd A 0 1 k 4 n 0 i A n n ! k
24 19 resin4p A sin A = A - A 3 6 + k 4 n 0 i A n n ! k
25 5 24 syl A 0 1 sin A = A - A 3 6 + k 4 n 0 i A n n ! k
26 13 23 25 mvrladdd A 0 1 sin A A A 3 6 = k 4 n 0 i A n n ! k
27 26 fveq2d A 0 1 sin A A A 3 6 = k 4 n 0 i A n n ! k
28 23 abscld A 0 1 k 4 n 0 i A n n ! k
29 21 abscld A 0 1 k 4 n 0 i A n n ! k
30 absimle k 4 n 0 i A n n ! k k 4 n 0 i A n n ! k k 4 n 0 i A n n ! k
31 21 30 syl A 0 1 k 4 n 0 i A n n ! k k 4 n 0 i A n n ! k
32 reexpcl A 4 0 A 4
33 5 18 32 sylancl A 0 1 A 4
34 nndivre A 4 6 A 4 6
35 33 9 34 sylancl A 0 1 A 4 6
36 19 ef01bndlem A 0 1 k 4 n 0 i A n n ! k < A 4 6
37 6 a1i A 0 1 3 0
38 4z 4
39 3re 3
40 4re 4
41 3lt4 3 < 4
42 39 40 41 ltleii 3 4
43 3z 3
44 43 eluz1i 4 3 4 3 4
45 38 42 44 mpbir2an 4 3
46 45 a1i A 0 1 4 3
47 4 simp2bi A 0 1 0 < A
48 0re 0
49 ltle 0 A 0 < A 0 A
50 48 5 49 sylancr A 0 1 0 < A 0 A
51 47 50 mpd A 0 1 0 A
52 4 simp3bi A 0 1 A 1
53 5 37 46 51 52 leexp2rd A 0 1 A 4 A 3
54 6re 6
55 54 a1i A 0 1 6
56 6pos 0 < 6
57 56 a1i A 0 1 0 < 6
58 lediv1 A 4 A 3 6 0 < 6 A 4 A 3 A 4 6 A 3 6
59 33 8 55 57 58 syl112anc A 0 1 A 4 A 3 A 4 6 A 3 6
60 53 59 mpbid A 0 1 A 4 6 A 3 6
61 29 35 11 36 60 ltletrd A 0 1 k 4 n 0 i A n n ! k < A 3 6
62 28 29 11 31 61 lelttrd A 0 1 k 4 n 0 i A n n ! k < A 3 6
63 27 62 eqbrtrd A 0 1 sin A A A 3 6 < A 3 6
64 5 resincld A 0 1 sin A
65 64 12 11 absdifltd A 0 1 sin A A A 3 6 < A 3 6 A - A 3 6 - A 3 6 < sin A sin A < A - A 3 6 + A 3 6
66 11 recnd A 0 1 A 3 6
67 15 66 66 subsub4d A 0 1 A - A 3 6 - A 3 6 = A A 3 6 + A 3 6
68 8 recnd A 0 1 A 3
69 3cn 3
70 3ne0 3 0
71 69 70 pm3.2i 3 3 0
72 2cnne0 2 2 0
73 divdiv1 A 3 3 3 0 2 2 0 A 3 3 2 = A 3 3 2
74 71 72 73 mp3an23 A 3 A 3 3 2 = A 3 3 2
75 68 74 syl A 0 1 A 3 3 2 = A 3 3 2
76 3t2e6 3 2 = 6
77 76 oveq2i A 3 3 2 = A 3 6
78 75 77 eqtr2di A 0 1 A 3 6 = A 3 3 2
79 78 78 oveq12d A 0 1 A 3 6 + A 3 6 = A 3 3 2 + A 3 3 2
80 3nn 3
81 nndivre A 3 3 A 3 3
82 8 80 81 sylancl A 0 1 A 3 3
83 82 recnd A 0 1 A 3 3
84 83 2halvesd A 0 1 A 3 3 2 + A 3 3 2 = A 3 3
85 79 84 eqtrd A 0 1 A 3 6 + A 3 6 = A 3 3
86 85 oveq2d A 0 1 A A 3 6 + A 3 6 = A A 3 3
87 67 86 eqtrd A 0 1 A - A 3 6 - A 3 6 = A A 3 3
88 87 breq1d A 0 1 A - A 3 6 - A 3 6 < sin A A A 3 3 < sin A
89 15 66 npcand A 0 1 A - A 3 6 + A 3 6 = A
90 89 breq2d A 0 1 sin A < A - A 3 6 + A 3 6 sin A < A
91 88 90 anbi12d A 0 1 A - A 3 6 - A 3 6 < sin A sin A < A - A 3 6 + A 3 6 A A 3 3 < sin A sin A < A
92 65 91 bitrd A 0 1 sin A A A 3 6 < A 3 6 A A 3 3 < sin A sin A < A
93 63 92 mpbid A 0 1 A A 3 3 < sin A sin A < A