Step |
Hyp |
Ref |
Expression |
1 |
|
0xr |
|
2 |
|
1re |
|
3 |
|
elioc2 |
|
4 |
1 2 3
|
mp2an |
|
5 |
4
|
simp1bi |
|
6 |
|
3nn0 |
|
7 |
|
reexpcl |
|
8 |
5 6 7
|
sylancl |
|
9 |
|
6nn |
|
10 |
|
nndivre |
|
11 |
8 9 10
|
sylancl |
|
12 |
5 11
|
resubcld |
|
13 |
12
|
recnd |
|
14 |
|
ax-icn |
|
15 |
5
|
recnd |
|
16 |
|
mulcl |
|
17 |
14 15 16
|
sylancr |
|
18 |
|
4nn0 |
|
19 |
|
eqid |
|
20 |
19
|
eftlcl |
|
21 |
17 18 20
|
sylancl |
|
22 |
21
|
imcld |
|
23 |
22
|
recnd |
|
24 |
19
|
resin4p |
|
25 |
5 24
|
syl |
|
26 |
13 23 25
|
mvrladdd |
|
27 |
26
|
fveq2d |
|
28 |
23
|
abscld |
|
29 |
21
|
abscld |
|
30 |
|
absimle |
|
31 |
21 30
|
syl |
|
32 |
|
reexpcl |
|
33 |
5 18 32
|
sylancl |
|
34 |
|
nndivre |
|
35 |
33 9 34
|
sylancl |
|
36 |
19
|
ef01bndlem |
|
37 |
6
|
a1i |
|
38 |
|
4z |
|
39 |
|
3re |
|
40 |
|
4re |
|
41 |
|
3lt4 |
|
42 |
39 40 41
|
ltleii |
|
43 |
|
3z |
|
44 |
43
|
eluz1i |
|
45 |
38 42 44
|
mpbir2an |
|
46 |
45
|
a1i |
|
47 |
4
|
simp2bi |
|
48 |
|
0re |
|
49 |
|
ltle |
|
50 |
48 5 49
|
sylancr |
|
51 |
47 50
|
mpd |
|
52 |
4
|
simp3bi |
|
53 |
5 37 46 51 52
|
leexp2rd |
|
54 |
|
6re |
|
55 |
54
|
a1i |
|
56 |
|
6pos |
|
57 |
56
|
a1i |
|
58 |
|
lediv1 |
|
59 |
33 8 55 57 58
|
syl112anc |
|
60 |
53 59
|
mpbid |
|
61 |
29 35 11 36 60
|
ltletrd |
|
62 |
28 29 11 31 61
|
lelttrd |
|
63 |
27 62
|
eqbrtrd |
|
64 |
5
|
resincld |
|
65 |
64 12 11
|
absdifltd |
|
66 |
11
|
recnd |
|
67 |
15 66 66
|
subsub4d |
|
68 |
8
|
recnd |
|
69 |
|
3cn |
|
70 |
|
3ne0 |
|
71 |
69 70
|
pm3.2i |
|
72 |
|
2cnne0 |
|
73 |
|
divdiv1 |
|
74 |
71 72 73
|
mp3an23 |
|
75 |
68 74
|
syl |
|
76 |
|
3t2e6 |
|
77 |
76
|
oveq2i |
|
78 |
75 77
|
eqtr2di |
|
79 |
78 78
|
oveq12d |
|
80 |
|
3nn |
|
81 |
|
nndivre |
|
82 |
8 80 81
|
sylancl |
|
83 |
82
|
recnd |
|
84 |
83
|
2halvesd |
|
85 |
79 84
|
eqtrd |
|
86 |
85
|
oveq2d |
|
87 |
67 86
|
eqtrd |
|
88 |
87
|
breq1d |
|
89 |
15 66
|
npcand |
|
90 |
89
|
breq2d |
|
91 |
88 90
|
anbi12d |
|
92 |
65 91
|
bitrd |
|
93 |
63 92
|
mpbid |
|