Step |
Hyp |
Ref |
Expression |
1 |
|
0xr |
|
2 |
|
1re |
|
3 |
|
elioc2 |
|
4 |
1 2 3
|
mp2an |
|
5 |
4
|
simp1bi |
|
6 |
|
3nn0 |
|
7 |
|
reexpcl |
|
8 |
5 6 7
|
sylancl |
|
9 |
|
3re |
|
10 |
|
3ne0 |
|
11 |
|
redivcl |
|
12 |
9 10 11
|
mp3an23 |
|
13 |
8 12
|
syl |
|
14 |
|
3z |
|
15 |
|
expgt0 |
|
16 |
14 15
|
mp3an2 |
|
17 |
16
|
3adant3 |
|
18 |
4 17
|
sylbi |
|
19 |
|
0lt1 |
|
20 |
2 19
|
pm3.2i |
|
21 |
|
3pos |
|
22 |
9 21
|
pm3.2i |
|
23 |
|
1lt3 |
|
24 |
|
ltdiv2 |
|
25 |
23 24
|
mpbii |
|
26 |
20 22 25
|
mp3an12 |
|
27 |
8 18 26
|
syl2anc |
|
28 |
8
|
recnd |
|
29 |
28
|
div1d |
|
30 |
27 29
|
breqtrd |
|
31 |
|
1nn0 |
|
32 |
31
|
a1i |
|
33 |
|
1le3 |
|
34 |
|
1z |
|
35 |
34
|
eluz1i |
|
36 |
14 33 35
|
mpbir2an |
|
37 |
36
|
a1i |
|
38 |
4
|
simp2bi |
|
39 |
|
0re |
|
40 |
|
ltle |
|
41 |
39 5 40
|
sylancr |
|
42 |
38 41
|
mpd |
|
43 |
4
|
simp3bi |
|
44 |
5 32 37 42 43
|
leexp2rd |
|
45 |
5
|
recnd |
|
46 |
45
|
exp1d |
|
47 |
44 46
|
breqtrd |
|
48 |
13 8 5 30 47
|
ltletrd |
|
49 |
13 5
|
posdifd |
|
50 |
48 49
|
mpbid |
|
51 |
|
sin01bnd |
|
52 |
51
|
simpld |
|
53 |
5 13
|
resubcld |
|
54 |
5
|
resincld |
|
55 |
|
lttr |
|
56 |
39 53 54 55
|
mp3an2i |
|
57 |
50 52 56
|
mp2and |
|