Metamath Proof Explorer


Theorem sin01gt0

Description: The sine of a positive real number less than or equal to 1 is positive. (Contributed by Paul Chapman, 19-Jan-2008) (Revised by Wolf Lammen, 25-Sep-2020)

Ref Expression
Assertion sin01gt0 A 0 1 0 < sin A

Proof

Step Hyp Ref Expression
1 0xr 0 *
2 1re 1
3 elioc2 0 * 1 A 0 1 A 0 < A A 1
4 1 2 3 mp2an A 0 1 A 0 < A A 1
5 4 simp1bi A 0 1 A
6 3nn0 3 0
7 reexpcl A 3 0 A 3
8 5 6 7 sylancl A 0 1 A 3
9 3re 3
10 3ne0 3 0
11 redivcl A 3 3 3 0 A 3 3
12 9 10 11 mp3an23 A 3 A 3 3
13 8 12 syl A 0 1 A 3 3
14 3z 3
15 expgt0 A 3 0 < A 0 < A 3
16 14 15 mp3an2 A 0 < A 0 < A 3
17 16 3adant3 A 0 < A A 1 0 < A 3
18 4 17 sylbi A 0 1 0 < A 3
19 0lt1 0 < 1
20 2 19 pm3.2i 1 0 < 1
21 3pos 0 < 3
22 9 21 pm3.2i 3 0 < 3
23 1lt3 1 < 3
24 ltdiv2 1 0 < 1 3 0 < 3 A 3 0 < A 3 1 < 3 A 3 3 < A 3 1
25 23 24 mpbii 1 0 < 1 3 0 < 3 A 3 0 < A 3 A 3 3 < A 3 1
26 20 22 25 mp3an12 A 3 0 < A 3 A 3 3 < A 3 1
27 8 18 26 syl2anc A 0 1 A 3 3 < A 3 1
28 8 recnd A 0 1 A 3
29 28 div1d A 0 1 A 3 1 = A 3
30 27 29 breqtrd A 0 1 A 3 3 < A 3
31 1nn0 1 0
32 31 a1i A 0 1 1 0
33 1le3 1 3
34 1z 1
35 34 eluz1i 3 1 3 1 3
36 14 33 35 mpbir2an 3 1
37 36 a1i A 0 1 3 1
38 4 simp2bi A 0 1 0 < A
39 0re 0
40 ltle 0 A 0 < A 0 A
41 39 5 40 sylancr A 0 1 0 < A 0 A
42 38 41 mpd A 0 1 0 A
43 4 simp3bi A 0 1 A 1
44 5 32 37 42 43 leexp2rd A 0 1 A 3 A 1
45 5 recnd A 0 1 A
46 45 exp1d A 0 1 A 1 = A
47 44 46 breqtrd A 0 1 A 3 A
48 13 8 5 30 47 ltletrd A 0 1 A 3 3 < A
49 13 5 posdifd A 0 1 A 3 3 < A 0 < A A 3 3
50 48 49 mpbid A 0 1 0 < A A 3 3
51 sin01bnd A 0 1 A A 3 3 < sin A sin A < A
52 51 simpld A 0 1 A A 3 3 < sin A
53 5 13 resubcld A 0 1 A A 3 3
54 5 resincld A 0 1 sin A
55 lttr 0 A A 3 3 sin A 0 < A A 3 3 A A 3 3 < sin A 0 < sin A
56 39 53 54 55 mp3an2i A 0 1 0 < A A 3 3 A A 3 3 < sin A 0 < sin A
57 50 52 56 mp2and A 0 1 0 < sin A