Metamath Proof Explorer


Theorem sin02gt0

Description: The sine of a positive real number less than or equal to 2 is positive. (Contributed by Paul Chapman, 19-Jan-2008)

Ref Expression
Assertion sin02gt0 A 0 2 0 < sin A

Proof

Step Hyp Ref Expression
1 0xr 0 *
2 2re 2
3 elioc2 0 * 2 A 0 2 A 0 < A A 2
4 1 2 3 mp2an A 0 2 A 0 < A A 2
5 rehalfcl A A 2
6 5 3ad2ant1 A 0 < A A 2 A 2
7 4 6 sylbi A 0 2 A 2
8 resincl A 2 sin A 2
9 recoscl A 2 cos A 2
10 8 9 remulcld A 2 sin A 2 cos A 2
11 7 10 syl A 0 2 sin A 2 cos A 2
12 2pos 0 < 2
13 divgt0 A 0 < A 2 0 < 2 0 < A 2
14 2 12 13 mpanr12 A 0 < A 0 < A 2
15 14 3adant3 A 0 < A A 2 0 < A 2
16 2 12 pm3.2i 2 0 < 2
17 lediv1 A 2 2 0 < 2 A 2 A 2 2 2
18 2 16 17 mp3an23 A A 2 A 2 2 2
19 18 biimpa A A 2 A 2 2 2
20 2div2e1 2 2 = 1
21 19 20 breqtrdi A A 2 A 2 1
22 21 3adant2 A 0 < A A 2 A 2 1
23 6 15 22 3jca A 0 < A A 2 A 2 0 < A 2 A 2 1
24 1re 1
25 elioc2 0 * 1 A 2 0 1 A 2 0 < A 2 A 2 1
26 1 24 25 mp2an A 2 0 1 A 2 0 < A 2 A 2 1
27 23 4 26 3imtr4i A 0 2 A 2 0 1
28 sin01gt0 A 2 0 1 0 < sin A 2
29 27 28 syl A 0 2 0 < sin A 2
30 cos01gt0 A 2 0 1 0 < cos A 2
31 27 30 syl A 0 2 0 < cos A 2
32 axmulgt0 sin A 2 cos A 2 0 < sin A 2 0 < cos A 2 0 < sin A 2 cos A 2
33 8 9 32 syl2anc A 2 0 < sin A 2 0 < cos A 2 0 < sin A 2 cos A 2
34 7 33 syl A 0 2 0 < sin A 2 0 < cos A 2 0 < sin A 2 cos A 2
35 29 31 34 mp2and A 0 2 0 < sin A 2 cos A 2
36 axmulgt0 2 sin A 2 cos A 2 0 < 2 0 < sin A 2 cos A 2 0 < 2 sin A 2 cos A 2
37 2 36 mpan sin A 2 cos A 2 0 < 2 0 < sin A 2 cos A 2 0 < 2 sin A 2 cos A 2
38 12 37 mpani sin A 2 cos A 2 0 < sin A 2 cos A 2 0 < 2 sin A 2 cos A 2
39 11 35 38 sylc A 0 2 0 < 2 sin A 2 cos A 2
40 7 recnd A 0 2 A 2
41 sin2t A 2 sin 2 A 2 = 2 sin A 2 cos A 2
42 40 41 syl A 0 2 sin 2 A 2 = 2 sin A 2 cos A 2
43 39 42 breqtrrd A 0 2 0 < sin 2 A 2
44 4 simp1bi A 0 2 A
45 44 recnd A 0 2 A
46 2cn 2
47 2ne0 2 0
48 divcan2 A 2 2 0 2 A 2 = A
49 46 47 48 mp3an23 A 2 A 2 = A
50 45 49 syl A 0 2 2 A 2 = A
51 50 fveq2d A 0 2 sin 2 A 2 = sin A
52 43 51 breqtrd A 0 2 0 < sin A