Metamath Proof Explorer


Theorem sin2kpi

Description: If K is an integer, then the sine of 2 K _pi is 0. (Contributed by Paul Chapman, 23-Jan-2008) (Revised by Mario Carneiro, 10-May-2014)

Ref Expression
Assertion sin2kpi K sin K 2 π = 0

Proof

Step Hyp Ref Expression
1 zcn K K
2 2cn 2
3 picn π
4 2 3 mulcli 2 π
5 mulcl K 2 π K 2 π
6 1 4 5 sylancl K K 2 π
7 6 addid2d K 0 + K 2 π = K 2 π
8 7 fveq2d K sin 0 + K 2 π = sin K 2 π
9 0cn 0
10 sinper 0 K sin 0 + K 2 π = sin 0
11 9 10 mpan K sin 0 + K 2 π = sin 0
12 sin0 sin 0 = 0
13 11 12 eqtrdi K sin 0 + K 2 π = 0
14 8 13 eqtr3d K sin K 2 π = 0