Metamath Proof Explorer


Theorem sin4lt0

Description: The sine of 4 is negative. (Contributed by Paul Chapman, 19-Jan-2008)

Ref Expression
Assertion sin4lt0 sin 4 < 0

Proof

Step Hyp Ref Expression
1 2t2e4 2 2 = 4
2 1 fveq2i sin 2 2 = sin 4
3 2cn 2
4 sin2t 2 sin 2 2 = 2 sin 2 cos 2
5 3 4 ax-mp sin 2 2 = 2 sin 2 cos 2
6 2 5 eqtr3i sin 4 = 2 sin 2 cos 2
7 sincos2sgn 0 < sin 2 cos 2 < 0
8 7 simpri cos 2 < 0
9 2re 2
10 recoscl 2 cos 2
11 9 10 ax-mp cos 2
12 0re 0
13 resincl 2 sin 2
14 9 13 ax-mp sin 2
15 7 simpli 0 < sin 2
16 14 15 pm3.2i sin 2 0 < sin 2
17 ltmul2 cos 2 0 sin 2 0 < sin 2 cos 2 < 0 sin 2 cos 2 < sin 2 0
18 11 12 16 17 mp3an cos 2 < 0 sin 2 cos 2 < sin 2 0
19 8 18 mpbi sin 2 cos 2 < sin 2 0
20 14 recni sin 2
21 20 mul01i sin 2 0 = 0
22 19 21 breqtri sin 2 cos 2 < 0
23 14 11 remulcli sin 2 cos 2
24 2pos 0 < 2
25 9 24 pm3.2i 2 0 < 2
26 ltmul2 sin 2 cos 2 0 2 0 < 2 sin 2 cos 2 < 0 2 sin 2 cos 2 < 2 0
27 23 12 25 26 mp3an sin 2 cos 2 < 0 2 sin 2 cos 2 < 2 0
28 22 27 mpbi 2 sin 2 cos 2 < 2 0
29 3 mul01i 2 0 = 0
30 28 29 breqtri 2 sin 2 cos 2 < 0
31 6 30 eqbrtri sin 4 < 0