Metamath Proof Explorer


Theorem sinacos

Description: The sine of the arccosine of A is sqrt ( 1 - A ^ 2 ) . (Contributed by Mario Carneiro, 2-Apr-2015)

Ref Expression
Assertion sinacos A sin arccos A = 1 A 2

Proof

Step Hyp Ref Expression
1 acosval A arccos A = π 2 arcsin A
2 1 oveq2d A π 2 arccos A = π 2 π 2 arcsin A
3 picn π
4 halfcl π π 2
5 3 4 ax-mp π 2
6 asincl A arcsin A
7 nncan π 2 arcsin A π 2 π 2 arcsin A = arcsin A
8 5 6 7 sylancr A π 2 π 2 arcsin A = arcsin A
9 2 8 eqtrd A π 2 arccos A = arcsin A
10 9 fveq2d A cos π 2 arccos A = cos arcsin A
11 acoscl A arccos A
12 coshalfpim arccos A cos π 2 arccos A = sin arccos A
13 11 12 syl A cos π 2 arccos A = sin arccos A
14 cosasin A cos arcsin A = 1 A 2
15 10 13 14 3eqtr3d A sin arccos A = 1 A 2