Step |
Hyp |
Ref |
Expression |
1 |
|
addcl |
|
2 |
|
sinval |
|
3 |
1 2
|
syl |
|
4 |
|
2cn |
|
5 |
4
|
a1i |
|
6 |
|
ax-icn |
|
7 |
6
|
a1i |
|
8 |
|
coscl |
|
9 |
8
|
adantr |
|
10 |
|
sincl |
|
11 |
10
|
adantl |
|
12 |
9 11
|
mulcld |
|
13 |
|
sincl |
|
14 |
13
|
adantr |
|
15 |
|
coscl |
|
16 |
15
|
adantl |
|
17 |
14 16
|
mulcld |
|
18 |
12 17
|
addcld |
|
19 |
5 7 18
|
mulassd |
|
20 |
7 12 17
|
adddid |
|
21 |
7 9 11
|
mul12d |
|
22 |
14 16
|
mulcomd |
|
23 |
22
|
oveq2d |
|
24 |
7 16 14
|
mul12d |
|
25 |
23 24
|
eqtrd |
|
26 |
21 25
|
oveq12d |
|
27 |
20 26
|
eqtrd |
|
28 |
27
|
oveq2d |
|
29 |
19 28
|
eqtrd |
|
30 |
|
mulcl |
|
31 |
6 11 30
|
sylancr |
|
32 |
9 31
|
mulcld |
|
33 |
|
mulcl |
|
34 |
6 14 33
|
sylancr |
|
35 |
16 34
|
mulcld |
|
36 |
32 35
|
addcld |
|
37 |
|
mulcl |
|
38 |
4 36 37
|
sylancr |
|
39 |
|
2mulicn |
|
40 |
39
|
a1i |
|
41 |
|
2muline0 |
|
42 |
41
|
a1i |
|
43 |
38 40 18 42
|
divmuld |
|
44 |
29 43
|
mpbird |
|
45 |
9 16
|
mulcld |
|
46 |
31 34
|
mulcld |
|
47 |
45 46
|
addcld |
|
48 |
47 36 36
|
pnncand |
|
49 |
|
adddi |
|
50 |
6 49
|
mp3an1 |
|
51 |
50
|
fveq2d |
|
52 |
|
simpl |
|
53 |
|
mulcl |
|
54 |
6 52 53
|
sylancr |
|
55 |
|
simpr |
|
56 |
|
mulcl |
|
57 |
6 55 56
|
sylancr |
|
58 |
|
efadd |
|
59 |
54 57 58
|
syl2anc |
|
60 |
|
efival |
|
61 |
|
efival |
|
62 |
60 61
|
oveqan12d |
|
63 |
9 34 16 31
|
muladdd |
|
64 |
62 63
|
eqtrd |
|
65 |
51 59 64
|
3eqtrd |
|
66 |
|
negicn |
|
67 |
|
adddi |
|
68 |
66 67
|
mp3an1 |
|
69 |
68
|
fveq2d |
|
70 |
|
mulcl |
|
71 |
66 52 70
|
sylancr |
|
72 |
|
mulcl |
|
73 |
66 55 72
|
sylancr |
|
74 |
|
efadd |
|
75 |
71 73 74
|
syl2anc |
|
76 |
|
efmival |
|
77 |
|
efmival |
|
78 |
76 77
|
oveqan12d |
|
79 |
9 34 16 31
|
mulsubd |
|
80 |
78 79
|
eqtrd |
|
81 |
69 75 80
|
3eqtrd |
|
82 |
65 81
|
oveq12d |
|
83 |
36
|
2timesd |
|
84 |
48 82 83
|
3eqtr4d |
|
85 |
84
|
oveq1d |
|
86 |
17 12
|
addcomd |
|
87 |
44 85 86
|
3eqtr4d |
|
88 |
3 87
|
eqtrd |
|