Metamath Proof Explorer


Theorem sincn

Description: Sine is continuous. (Contributed by Paul Chapman, 28-Nov-2007) (Revised by Mario Carneiro, 3-Sep-2014)

Ref Expression
Assertion sincn sin : cn

Proof

Step Hyp Ref Expression
1 df-sin sin = x e i x e i x 2 i
2 eqid TopOpen fld = TopOpen fld
3 2 subcn TopOpen fld × t TopOpen fld Cn TopOpen fld
4 3 a1i TopOpen fld × t TopOpen fld Cn TopOpen fld
5 efcn exp : cn
6 5 a1i exp : cn
7 ax-icn i
8 eqid x i x = x i x
9 8 mulc1cncf i x i x : cn
10 7 9 mp1i x i x : cn
11 6 10 cncfmpt1f x e i x : cn
12 negicn i
13 eqid x i x = x i x
14 13 mulc1cncf i x i x : cn
15 12 14 mp1i x i x : cn
16 6 15 cncfmpt1f x e i x : cn
17 2 4 11 16 cncfmpt2f x e i x e i x : cn
18 cncff x e i x e i x : cn x e i x e i x :
19 17 18 syl x e i x e i x :
20 eqid x e i x e i x = x e i x e i x
21 20 fmpt x e i x e i x x e i x e i x :
22 19 21 sylibr x e i x e i x
23 eqidd x e i x e i x = x e i x e i x
24 eqidd y y 2 i = y y 2 i
25 oveq1 y = e i x e i x y 2 i = e i x e i x 2 i
26 22 23 24 25 fmptcof y y 2 i x e i x e i x = x e i x e i x 2 i
27 2mulicn 2 i
28 2muline0 2 i 0
29 eqid y y 2 i = y y 2 i
30 29 divccncf 2 i 2 i 0 y y 2 i : cn
31 27 28 30 mp2an y y 2 i : cn
32 31 a1i y y 2 i : cn
33 17 32 cncfco y y 2 i x e i x e i x : cn
34 26 33 eqeltrrd x e i x e i x 2 i : cn
35 34 mptru x e i x e i x 2 i : cn
36 1 35 eqeltri sin : cn