Metamath Proof Explorer


Theorem sincos1sgn

Description: The signs of the sine and cosine of 1. (Contributed by Paul Chapman, 19-Jan-2008)

Ref Expression
Assertion sincos1sgn 0 < sin 1 0 < cos 1

Proof

Step Hyp Ref Expression
1 1re 1
2 0lt1 0 < 1
3 1le1 1 1
4 0xr 0 *
5 elioc2 0 * 1 1 0 1 1 0 < 1 1 1
6 4 1 5 mp2an 1 0 1 1 0 < 1 1 1
7 1 2 3 6 mpbir3an 1 0 1
8 sin01gt0 1 0 1 0 < sin 1
9 cos01gt0 1 0 1 0 < cos 1
10 8 9 jca 1 0 1 0 < sin 1 0 < cos 1
11 7 10 ax-mp 0 < sin 1 0 < cos 1