Metamath Proof Explorer


Theorem sincos2sgn

Description: The signs of the sine and cosine of 2. (Contributed by Paul Chapman, 19-Jan-2008)

Ref Expression
Assertion sincos2sgn 0 < sin 2 cos 2 < 0

Proof

Step Hyp Ref Expression
1 2re 2
2 2pos 0 < 2
3 1 leidi 2 2
4 0xr 0 *
5 elioc2 0 * 2 2 0 2 2 0 < 2 2 2
6 4 1 5 mp2an 2 0 2 2 0 < 2 2 2
7 1 2 3 6 mpbir3an 2 0 2
8 sin02gt0 2 0 2 0 < sin 2
9 7 8 ax-mp 0 < sin 2
10 cos2bnd 7 9 < cos 2 cos 2 < 1 9
11 10 simpri cos 2 < 1 9
12 9re 9
13 9pos 0 < 9
14 12 13 recgt0ii 0 < 1 9
15 12 13 gt0ne0ii 9 0
16 12 15 rereccli 1 9
17 lt0neg2 1 9 0 < 1 9 1 9 < 0
18 16 17 ax-mp 0 < 1 9 1 9 < 0
19 14 18 mpbi 1 9 < 0
20 recoscl 2 cos 2
21 1 20 ax-mp cos 2
22 16 renegcli 1 9
23 0re 0
24 21 22 23 lttri cos 2 < 1 9 1 9 < 0 cos 2 < 0
25 11 19 24 mp2an cos 2 < 0
26 9 25 pm3.2i 0 < sin 2 cos 2 < 0