Metamath Proof Explorer


Theorem sincos3rdpi

Description: The sine and cosine of _pi / 3 . (Contributed by Mario Carneiro, 21-May-2016)

Ref Expression
Assertion sincos3rdpi sin π 3 = 3 2 cos π 3 = 1 2

Proof

Step Hyp Ref Expression
1 picn π
2 2cn 2
3 2ne0 2 0
4 2 3 reccli 1 2
5 3cn 3
6 3ne0 3 0
7 5 6 reccli 1 3
8 1 4 7 subdii π 1 2 1 3 = π 1 2 π 1 3
9 halfthird 1 2 1 3 = 1 6
10 9 oveq2i π 1 2 1 3 = π 1 6
11 8 10 eqtr3i π 1 2 π 1 3 = π 1 6
12 1 2 3 divreci π 2 = π 1 2
13 1 5 6 divreci π 3 = π 1 3
14 12 13 oveq12i π 2 π 3 = π 1 2 π 1 3
15 6cn 6
16 6nn 6
17 16 nnne0i 6 0
18 1 15 17 divreci π 6 = π 1 6
19 11 14 18 3eqtr4i π 2 π 3 = π 6
20 19 fveq2i cos π 2 π 3 = cos π 6
21 1 5 6 divcli π 3
22 coshalfpim π 3 cos π 2 π 3 = sin π 3
23 21 22 ax-mp cos π 2 π 3 = sin π 3
24 sincos6thpi sin π 6 = 1 2 cos π 6 = 3 2
25 24 simpri cos π 6 = 3 2
26 20 23 25 3eqtr3i sin π 3 = 3 2
27 19 fveq2i sin π 2 π 3 = sin π 6
28 sinhalfpim π 3 sin π 2 π 3 = cos π 3
29 21 28 ax-mp sin π 2 π 3 = cos π 3
30 24 simpli sin π 6 = 1 2
31 27 29 30 3eqtr3i cos π 3 = 1 2
32 26 31 pm3.2i sin π 3 = 3 2 cos π 3 = 1 2