Metamath Proof Explorer


Theorem sincos4thpi

Description: The sine and cosine of _pi / 4 . (Contributed by Paul Chapman, 25-Jan-2008)

Ref Expression
Assertion sincos4thpi sin π 4 = 1 2 cos π 4 = 1 2

Proof

Step Hyp Ref Expression
1 halfcn 1 2
2 ax-1cn 1
3 2halves 1 1 2 + 1 2 = 1
4 2 3 ax-mp 1 2 + 1 2 = 1
5 sincosq1eq 1 2 1 2 1 2 + 1 2 = 1 sin 1 2 π 2 = cos 1 2 π 2
6 1 1 4 5 mp3an sin 1 2 π 2 = cos 1 2 π 2
7 6 oveq2i sin 1 2 π 2 sin 1 2 π 2 = sin 1 2 π 2 cos 1 2 π 2
8 7 oveq2i 2 sin 1 2 π 2 sin 1 2 π 2 = 2 sin 1 2 π 2 cos 1 2 π 2
9 2cn 2
10 pire π
11 10 recni π
12 2ne0 2 0
13 2 9 11 9 12 12 divmuldivi 1 2 π 2 = 1 π 2 2
14 11 mulid2i 1 π = π
15 2t2e4 2 2 = 4
16 14 15 oveq12i 1 π 2 2 = π 4
17 13 16 eqtri 1 2 π 2 = π 4
18 17 fveq2i sin 1 2 π 2 = sin π 4
19 18 18 oveq12i sin 1 2 π 2 sin 1 2 π 2 = sin π 4 sin π 4
20 19 oveq2i 2 sin 1 2 π 2 sin 1 2 π 2 = 2 sin π 4 sin π 4
21 9 12 recidi 2 1 2 = 1
22 21 oveq1i 2 1 2 π 2 = 1 π 2
23 2re 2
24 10 23 12 redivcli π 2
25 24 recni π 2
26 9 1 25 mulassi 2 1 2 π 2 = 2 1 2 π 2
27 25 mulid2i 1 π 2 = π 2
28 22 26 27 3eqtr3i 2 1 2 π 2 = π 2
29 28 fveq2i sin 2 1 2 π 2 = sin π 2
30 1 25 mulcli 1 2 π 2
31 sin2t 1 2 π 2 sin 2 1 2 π 2 = 2 sin 1 2 π 2 cos 1 2 π 2
32 30 31 ax-mp sin 2 1 2 π 2 = 2 sin 1 2 π 2 cos 1 2 π 2
33 sinhalfpi sin π 2 = 1
34 29 32 33 3eqtr3i 2 sin 1 2 π 2 cos 1 2 π 2 = 1
35 8 20 34 3eqtr3i 2 sin π 4 sin π 4 = 1
36 35 fveq2i 2 sin π 4 sin π 4 = 1
37 4re 4
38 4ne0 4 0
39 10 37 38 redivcli π 4
40 resincl π 4 sin π 4
41 39 40 ax-mp sin π 4
42 41 41 remulcli sin π 4 sin π 4
43 0le2 0 2
44 41 msqge0i 0 sin π 4 sin π 4
45 23 42 43 44 sqrtmulii 2 sin π 4 sin π 4 = 2 sin π 4 sin π 4
46 sqrt1 1 = 1
47 36 45 46 3eqtr3ri 1 = 2 sin π 4 sin π 4
48 42 sqrtcli 0 sin π 4 sin π 4 sin π 4 sin π 4
49 44 48 ax-mp sin π 4 sin π 4
50 49 recni sin π 4 sin π 4
51 sqrt2re 2
52 51 recni 2
53 sqrt00 2 0 2 2 = 0 2 = 0
54 23 43 53 mp2an 2 = 0 2 = 0
55 54 necon3bii 2 0 2 0
56 12 55 mpbir 2 0
57 52 56 pm3.2i 2 2 0
58 divmul2 1 sin π 4 sin π 4 2 2 0 1 2 = sin π 4 sin π 4 1 = 2 sin π 4 sin π 4
59 2 50 57 58 mp3an 1 2 = sin π 4 sin π 4 1 = 2 sin π 4 sin π 4
60 47 59 mpbir 1 2 = sin π 4 sin π 4
61 0re 0
62 pipos 0 < π
63 4pos 0 < 4
64 10 37 62 63 divgt0ii 0 < π 4
65 1re 1
66 pigt2lt4 2 < π π < 4
67 66 simpri π < 4
68 10 37 37 63 ltdiv1ii π < 4 π 4 < 4 4
69 67 68 mpbi π 4 < 4 4
70 37 recni 4
71 70 38 dividi 4 4 = 1
72 69 71 breqtri π 4 < 1
73 39 65 72 ltleii π 4 1
74 0xr 0 *
75 elioc2 0 * 1 π 4 0 1 π 4 0 < π 4 π 4 1
76 74 65 75 mp2an π 4 0 1 π 4 0 < π 4 π 4 1
77 39 64 73 76 mpbir3an π 4 0 1
78 sin01gt0 π 4 0 1 0 < sin π 4
79 77 78 ax-mp 0 < sin π 4
80 61 41 79 ltleii 0 sin π 4
81 41 sqrtmsqi 0 sin π 4 sin π 4 sin π 4 = sin π 4
82 80 81 ax-mp sin π 4 sin π 4 = sin π 4
83 60 82 eqtr2i sin π 4 = 1 2
84 60 82 eqtri 1 2 = sin π 4
85 17 fveq2i cos 1 2 π 2 = cos π 4
86 6 18 85 3eqtr3i sin π 4 = cos π 4
87 84 86 eqtr2i cos π 4 = 1 2
88 83 87 pm3.2i sin π 4 = 1 2 cos π 4 = 1 2