Step |
Hyp |
Ref |
Expression |
1 |
|
halfcn |
|
2 |
|
ax-1cn |
|
3 |
|
2halves |
|
4 |
2 3
|
ax-mp |
|
5 |
|
sincosq1eq |
|
6 |
1 1 4 5
|
mp3an |
|
7 |
6
|
oveq2i |
|
8 |
7
|
oveq2i |
|
9 |
|
2cn |
|
10 |
|
pire |
|
11 |
10
|
recni |
|
12 |
|
2ne0 |
|
13 |
2 9 11 9 12 12
|
divmuldivi |
|
14 |
11
|
mulid2i |
|
15 |
|
2t2e4 |
|
16 |
14 15
|
oveq12i |
|
17 |
13 16
|
eqtri |
|
18 |
17
|
fveq2i |
|
19 |
18 18
|
oveq12i |
|
20 |
19
|
oveq2i |
|
21 |
9 12
|
recidi |
|
22 |
21
|
oveq1i |
|
23 |
|
2re |
|
24 |
10 23 12
|
redivcli |
|
25 |
24
|
recni |
|
26 |
9 1 25
|
mulassi |
|
27 |
25
|
mulid2i |
|
28 |
22 26 27
|
3eqtr3i |
|
29 |
28
|
fveq2i |
|
30 |
1 25
|
mulcli |
|
31 |
|
sin2t |
|
32 |
30 31
|
ax-mp |
|
33 |
|
sinhalfpi |
|
34 |
29 32 33
|
3eqtr3i |
|
35 |
8 20 34
|
3eqtr3i |
|
36 |
35
|
fveq2i |
|
37 |
|
4re |
|
38 |
|
4ne0 |
|
39 |
10 37 38
|
redivcli |
|
40 |
|
resincl |
|
41 |
39 40
|
ax-mp |
|
42 |
41 41
|
remulcli |
|
43 |
|
0le2 |
|
44 |
41
|
msqge0i |
|
45 |
23 42 43 44
|
sqrtmulii |
|
46 |
|
sqrt1 |
|
47 |
36 45 46
|
3eqtr3ri |
|
48 |
42
|
sqrtcli |
|
49 |
44 48
|
ax-mp |
|
50 |
49
|
recni |
|
51 |
|
sqrt2re |
|
52 |
51
|
recni |
|
53 |
|
sqrt00 |
|
54 |
23 43 53
|
mp2an |
|
55 |
54
|
necon3bii |
|
56 |
12 55
|
mpbir |
|
57 |
52 56
|
pm3.2i |
|
58 |
|
divmul2 |
|
59 |
2 50 57 58
|
mp3an |
|
60 |
47 59
|
mpbir |
|
61 |
|
0re |
|
62 |
|
pipos |
|
63 |
|
4pos |
|
64 |
10 37 62 63
|
divgt0ii |
|
65 |
|
1re |
|
66 |
|
pigt2lt4 |
|
67 |
66
|
simpri |
|
68 |
10 37 37 63
|
ltdiv1ii |
|
69 |
67 68
|
mpbi |
|
70 |
37
|
recni |
|
71 |
70 38
|
dividi |
|
72 |
69 71
|
breqtri |
|
73 |
39 65 72
|
ltleii |
|
74 |
|
0xr |
|
75 |
|
elioc2 |
|
76 |
74 65 75
|
mp2an |
|
77 |
39 64 73 76
|
mpbir3an |
|
78 |
|
sin01gt0 |
|
79 |
77 78
|
ax-mp |
|
80 |
61 41 79
|
ltleii |
|
81 |
41
|
sqrtmsqi |
|
82 |
80 81
|
ax-mp |
|
83 |
60 82
|
eqtr2i |
|
84 |
60 82
|
eqtri |
|
85 |
17
|
fveq2i |
|
86 |
6 18 85
|
3eqtr3i |
|
87 |
84 86
|
eqtr2i |
|
88 |
83 87
|
pm3.2i |
|